

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Industrial Instrumentation (20EE0235)

Course & Branch: B.Tech - EEE Year & Sem: III-B.Tech & II-Sem

Regulation: R20

UNIT -I

CHARACTERISTICS OF SIGNALS AND THEIR REPRESENTATION

1	(a)	Explain the Dynamic characteristics of the measurement system.	[L2][CO1][4M]
	(b)	Explain the various Static characteristics of the measurement system.	[L2][CO1][8M]
2		Discuss the various errors that exist in the measurement system	[L2][CO1][12M]
3		Explain the various statistical methods to analyze the Random errors	[L2][CO1][12M]
4	(a)	Discuss various systematic errors that exist in the measurement systems	[L1][CO1][6M]
	(b)	Explain the different test signals used in standard test input signals	[L2][CO2][6M]
5		Define the term Modulation and explain in detail its classification	[L1[CO2]][12M]
6	(a)	Discuss in detail the various pulse modulation techniques	[L1][CO2][6M]
	(b)	Explain the terms periodic and aperiodic signals	[L2][CO2][6M]
7	(a)	Draw and explain the block diagram Pulse Code Modulation (PCM)	[L1][CO2][6M]
	(b)	Explain various modulation techniques	[L2][CO2][6M]
8		Define Terms (a) Modulation (b) Periodic (c) Aperiodic (d) Sampled Data (e) Modulation (f) Sampling	[L1][CO2][12M]
9		Define the terms (a) Sampling	[L1][CO2][12M]

1	.0	(a)	Draw and explain Pulse Width Modulation(PWM)	[L1][CO2][6M]
	((b)	Explain the Pulse Code Modulation(PCM) technique	[L2][CO2][6M]

<u>UNIT -II</u> **DATA TRANSMISSION, TELEMETRY AND DAS**

1	(a)	Explain the various methods of data transmission	[L2] [CO3] [6M]
	(b)	Draw and explain the block diagram of the general telemetry system	[L1] [CO3] [6M]
2	(a)	Explain about Frequency Modulation(FM)	[L2] [CO3] [6M]
	(b)	Explain the frequency modulation telemetry system	[L2] [CO3] [6M]
3		Draw and Explain the Modern Digital Data Acquisition System	L2] [CO3] [12M]
4	(a)	Compare the Frequency Modulation(FM) with Phase Modulation(PM).	[L2] [CO3] [6M]
	(b)	Amplitude Modulation(PAM)	[L1] [CO3] [6M]
5		Explain in detail the various components used in Analog Data Acquisition systems	[L2] [CO3] [12M]
6	(a)	Describe the various classifications of multiplexer	[L2] [CO3] [6M]
	(b)	Discuss the technique of Time division multiplexer	[L1] [CO3] [6M]
7		Discuss in detail about Pulse Amplitude Modulation(PAM) telemetry	[L1] [CO3] [12M]
8		Draw and Explain the Digital Data Acquisition System block diagram	[L1] [CO3] [12M]
9		Explain the different types of Multiplexing systems	[L2] [CO3] [12M]
10		Explain in detail about the various components used in Analog and digital Data Acquisition systems	[L2] [CO3] [12M]

<u>UNIT –III</u> SIGNAL ANALYZERS, DIGITAL METERS

1	a	Define the term wave analyzer and mention the various applications of wave analyzer.	[L1][CO3][6M]
	b	Explain the constructional details of the frequency selective analyzer with a neat diagram	[L2] [CO3][6M]
2	a	Explain the operational details of Hetrodyne wave analyzer	[L2] [CO3] [6M]

	b	Discuss the constructional details of the basic spectrum analyzer	[L1] [CO3] [6M]
3	a b	Discuss the operational details of the vector impedance meter Explain the operational details of peak reading and RMS Voltmeters	[L1] [CO3] [6M] [L2] [CO3] [6M]
4	a	What are the advantages of digital voltmeter?	[L2] [CO4] [6M]
	b	Explain about the successive approximation type digital voltmeters	[L2] [CO4] [6M]
5		Explain in detail about the various types of digital voltmeters	[L2][CO4][12M]
6		With a neat construction diagram, explain the operation of ramp type and integrating type digital voltmeters.	[L2][CO4][12M]
7	a	With neat construction diagram, explain the operation of digital multimeter	[L3][CO4][6M]
	b	Explain the constructional details of digital tachometer	[L2][CO4][6M]
8		Discuss the operation of vector impedance meter	[L2][CO3][12M]
9	a	With a neat construction diagram, explain the operation of digital frequency meter	[L2][CO4][6M]
	b	Define the terms (a) Spectral display (b) Total harmonic distortion (c) Q-Factor	[L2][CO4] [6M]
10	a		[L2][CO4][6M]
	b	Explain with a neat sketch the working details of integrating type digital voltmeters	[L2] [CO4] [6M]

<u>UNIT –IV</u> **TRANSDUCER**

1	a	What is a transducer? Explain classification of transducers	[L1] [CO5] [6M]
	b	Explain the advantages of electrical transducer	[L2] [CO5] [6M]
2	a	Describe the principle and operation of resistive transducer	[L2] [CO5] [4M]
	b	Explain about inductive transducers.	[L2] [CO5] [4M]
	c	Describe the principle and operation of capacitive transducer	[L2] [CO5] [4M]
3	a	Describe the construction and working of LVDT with a neat schematic	[L2] [CO5] [6M]
	b	Explain the principle of operation of strain gauge and gauge factor	[L2] [CO5] [6M]
4	a	Discuss in detail about Thermistors.	
	b	Describe the working principle of thermocouples	[L2] [CO5] [6M]
5	a	Describe the working principle of piezo electric transducers	[L2][CO5][12M]
	b	Discuss in detail about photovoltaic cells	[L2] [CO5] [4M]

6	a	Discuss in detail about photo conductive cells	[L2] [CO5] [4M]
	b	Discuss in detail about photo diodes.	[L2] [CO5] [4M]
7.	a	Explain the characteristics of transducers	[L2][CO5][6M]
	b	List out various advantages of electrical transducers	[L1][CO5][6M]
8.	a.	What is piezo-electric effect and explain its theory of operation	[L1][CO5][6M]
	b.	List out various factors involved in the selection of transducer	[L1][CO5][6M]
9.		Write notes on (i) Photo diode	[L2][CO5][12M]
		(ii) Photo Conductive cell	
		(iii) Photo voltaic cell	
10.		Explain the various types of transducers with relevant diagrams	[L2][CO5][12M]

<u>UNIT-V</u> MEASUREMENT OF NON-ELECTRICAL QUANTITIES

1	a	Explain the operation principle of strain gauge	[L2][CO6][6M]
	b	Explain the working principle of displacement transducer	[L2][CO6][6M]
2	a	Explain force measurement using load cells	[L2][CO6][6M]
	b	Explain the method used for the measurement of velocity	[L2][CO6][6M]
3		Discuss various types of angular velocity measurement methods.	[L2][CO6][12M]
4		Discuss various types of temperature sensors used in the measurement of temperature	[L2][CO6][12M]
5		What are the different types of methods used in the measurement of acceleration explain with relevant diagrams.	[L1][CO6][12M]
6	a	What is the anemometer? Briefly explain the hot wire anemometer.	[L1][CO6][6M]
	b	Explain the operation of the Resistance thermometer	[L2][CO6][6M]
7.		Discuss in detail the various methods used in the measurement of liquid level	[L2][CO6][12M]
8.	a.	Define strain and what are the reasons for experiencing strain	[L1][CO6][4M]
	b.	Explain the concept of Gauge sensitivity	[L2][CO6][8M]
9.		Write short notes on (i) Potentiometric accelerometer	[L2][CO6][12M]
		(ii) LVDT accelerometer	
		(iii) piezo electric type accelerometer	
10.		Explain the principle of operation of torque transducer	[L2][CO6][12M]